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ABSTRACT

This paper concerns the use of a method for the solution of ill�conditioned lin�

ear systems� We show that the Generalized Minimum Residual Method 
GMRES� in

conjunction with a truncated singular value decomposition can be used to solve large

nonsymmetric linear systems of equations which are nearly singular� Error bounds are

given for the right singular vectors and singular values computed� A consequence of the

error bounds results in a method for computing some of the singular values and right

singular vectors for large matrices�
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�� Introduction� Many important problems in numerical analysis require the so�

lution of nearly singular linear systems� For example
 in the solution of large�scale par�

tial di�erential equations one often has to solve nearly singular linear systems ��
 ����

Other examples include constrained optimization problems where the constraints may

be nearly linearly dependent ���
 decomposable Markov chains ����
 and integral equa�

tions �����

In this study we address the issues of computing the solution of large
 highly ill�

conditioned linear systems of equations by using an iterative technique that computes

the solution in the space spanned by the orthogonal complement of the singular vectors

corresponding to the small singular values� In particular
 we propose a modi	cation

to the GMRES method ���� for ill�conditioned systems of linear equations� Brown and

Walker ��� have also addressed the issue of using GMRES for nearly singular systems and

have suggested a technique based on incremental condition estimation� Our approach

also has the advantage of producing good approximations to some of the large and small

singular values of the matrix as well as the corresponding right singular vectors�

Consider the system of linear equations

Ax � b�
����

where x and b are n dimensional vectors and A is an n�n real matrix� Let the singular

value decomposition 
SVD� for A be

A � U�V T �

where U � �u�� � � � � un� and V � �v�� � � � � vn� are orthogonal matrices and � � diag
��� � � � � �n�

such that

�� � �� � ��� � �n � ��

If A is nonsingular
 then the solution to 
���� can be written in terms of the SVD as

follows�

x �
nX
i��

uTi b

�i
vi�

In this paper
 we are interested in the case where the matrix A is nearly singular


that is
 where one or more of the singular values is small� For purposes of exposition
 we
�



will only consider systems where there is one small singular value although the general

case can also be handled� If there is only one small singular value
 then we can split

the solution to 
���� into two components�

x � xd �
uTnb

�n
vn�
����

where

xd �
n��X
i��

uTi b

�i
vi�
����

Equation 
���� is called the de�ated decomposition and the vector xd is called the de�ated

solution to 
����� There are many de	nitions of the de�ated solution� Chan ��� de	nes

de�ated solutions of 
���� as solutions to nearby singular but consistent systems derived

from 
����� For example
 one might choose the nearest singular matrix to A in the

Frobenius norm and pick the de�ated solution to be the one with minimum norm� It

is well known that this choice amounts to setting the smallest singular value in the

singular value decomposition of the matrix A equal to zero� Other de	nitions can be

found in ����

In certain applications ��� it is preferable to compute the de�ated decomposi�

tion 
���� for accuracy reasons
 whereas in other applications the de�ated solution is

the only solution of interest� Notice that if the singular vectors un and vn were known

then both 
���� and 
���� could be computed by 	rst computing x and then orthogo�

nalizing against vn� However
 even if this decomposition were known this approach is

not advisable because it usually results in a poor approximation to xd due to roundo�

errors� In particular
 if the component of the solution in the direction of vn is large


then errors in that component tend to dominate the solution in the other directions�

Stewart ���� suggested a method for computing the de�ated solution of 
���� by an

implicit method� This method uses orthogonal projections constructed from approxi�

mations to the singular vectors of the matrix A corresponding to the smallest singular

value� The disadvantage of this method is that it requires a direct method for the so�

lution of 
����� Chan and Saad ��� proposed a de�ated Lanczos method for symmetric

positive de	nite linear systems which only requires a matrix�vector product� This work

has also been extended to nonsymmetric systems ���� In this study
 we propose a new

variation which appears to be more robust than the ones studied in ����
�



�� GMRES Method� Saad and Schultz ���� proposed the GMRES method for

solving large sparse nonsymmetric linear systems based on the Arnoldi process ��� for

computing the eigenvalues of a matrix� Arnoldi�s method is just the Gram�Schmidt

method for computing an orthonormal basis for a particular Krylov subspace� A state�

ment of the GMRES algorithm is given in Algorithm ����

Algorithm ���� GMRES Method

�� Choose x� and compute r� � b� Ax�� Set w� � r��kr�k�
�� For j � �� �� ���m

hij � 
Awj� wi�� i � �� �� ���� j

�wj�� � Awj �
jX

i��

hijwi

hj���j � k �wj��k
wj�� � �wj���hj���j

�� Form the solution�

min jjHmym � �me�jj� �m � jjrmjj
����

xm � x� �Wmym�
����

The matrix Wm � �w�� w�� � � � � wm� 
 and the entries of the 
m � �� � m upper

Hessenberg matrix Hm are the scalars
 hij� i � �� � � � � m� �� j � �� � � � � m
 generated in

step � of the GMRES algorithm� It is easy to show that

AWm �WmHm � �wm��e
T
m�
����

where the upper Hessenberg matrix Hm is the m �m matrix constructed by deleting

the last row of Hm�

The number of iterations
 m
 in step � of Algorithm ��� is chosen so that the

approximate solution xm is su�ciently accurate
 but small enough so as not to be

prohibitive in terms of storage required� If after m iterations the approximate solution

has not converged then it is possible to restart the algorithm using the current estimate

of x as the new initial guess� This method is denoted by GMRES
m�
 or the restarted
�



GMRES� The residual at any iteration may be computed without actually solving 
����

through the relation ����


jjb� Axmjj � hm���mjeTmymj�
����

Although the computation of the residual by 
���� requires solving 
���� for ym there

are ways to circumvent this computation by carrying an LU or QR factorization of the

matrix H throughout the Arnoldi process�

It is well known that the Arnoldi process may be viewed as a Galerkin process for

estimating the eigenvalues of a matrix� In particular
 if we apply Algorithm ��� to a

linear system of size n then the upper Hessenberg matrix
 Hn� that is generated after

n steps of the Arnoldi process will have the same eigenvalues as the matrix A� We

might expect then that if the original matrix A is ill�conditioned that the intermedi�

ate matrices
 Hm
 generated by the GMRES algorithm might also be ill�conditioned�

Therefore if we solve 
���� for ym in the straightforward way
 our computed solution

will be inaccurate for the reasons indicated in Section ��

Fortunately
 computing the de�ated solution of 
���� is easier than computing the

de�ated solution of 
����� Since the matrix Hm has dimension m � n the solution

of 
���� is at least computationally easier� Moreover
 the matrix elements of Hm are

on hand whereas the matrix elements of A may not be available
 as for example in the

inner iteration of a nonlinear method� The next section describes one such technique

which can be used to compute the de�ated solution of 
���� in a stable manner�

Several de�ation techniques have been previously suggested for the solution of

nearly singular nonsymmetric linear systems ���� We propose a new method based

on the truncated SVD solution to 
����� Assume that the matrix Hm has exactly one

small singular value and consider its singular value decomposition


Hm � U�V T �

where U and V are orthogonal matrices and � is a diagonal matrix containing the

singular values of Hm� By a truncated least squares solution to the system

Hmym � f�

we will mean the solution obtained by setting �m � �
 so that the solution is given by
�



ym �
m��X
i��

uTi f

�i
vi�

�� Theoretical Results� A question of when the singular values and singular

vectors of the matrix Hm converge to the singular values and vectors of the matrix

A still remains� If in the Arnoldi process the smallest singular value of Hm is not a

good approximation to the smallest singular value of the matrix A then we should not

compute the de�ated solution� In this section we present some results that attempt to

address these issues� We will show that given an approximation to the singular vectors

and a corresponding approximate singular value
 we can derive some useful error bounds

that can be used to determine when to de�ate the solution in the computation of the

truncated least squares�

Recall that the GMRES method is based on the Arnoldi method for reducing an

n� n matrix to upper Hessenberg form� If the Arnoldi method were to be carried out

for n steps
 then in exact arithmetic we would have

A �WHnW
T �
����

where W is an n � n orthogonal matrix� If we were to then compute the SVD of the

upper Hessenberg matrix Hn we would have the SVD of the matrix A by rewriting 
����

as

A � WUn�nV
T
n W

T �
����

� Zn�nY
T
n �
�����

where Yn and Zn are orthogonal matrices� Of course this is impractical
 since we would

never take n steps of the Arnoldi method
 but this does imply that there is a relation

between the intermediate matrices generated in the Arnoldi process and the singular

vectors of the matrix A�

Theorem ���� Suppose that m steps of the Arnoldi method have been taken� so

that we have

AWm �WmHm � rme
T
m�
�����

�



where

rm � hm���mwm���
�����

Furthermore� let Hm � Um�mV
T
m be the singular value decomposition of Hm and

de�ne

Ym � �y�� y�� � � � � ym� �WmVm�
�����

Zm � �z�� z�� � � � � zm� � WmUm�
�����

�m � jjrmjj�
�����

Then

jjAyi � �izijj� � �mjvmij� i � �� � � � � m�
�����

Proof� Multiply 
����� on the right by Vm which gives

AWmVm � WmHmVm � rme
T
mVm�

Using the de	nition of Ym� Zm
 and the SVD of Hm we have

AYm � Zm�m � rme
T
mVm�

or component�wise

Ayi � �izi � rm
e
T
mVmei�� i � �� � � � � m�

Inequality 
����� follows by taking norms and using the de	nition of �m�

It would be satisfying to have an equivalent relation for the transpose of inequal�

ity 
�����
 that is


AT zi � �iyi � �� i � �� � � � � m�
�����

Unfortunately inequality 
����� does not hold except in the case where m � n and

using exact arithmetic� The best that can be achieved is

Wm
T 
AT zi � �iyi� � �� i � �� � � � � m�
�����

Since the GMRES method does not ever use AT this should come as no surprise�
��



The vectors yi and the scalars �i can still be thought of as approximate right singular

vectors and singular values of the matrix A� but the vectors zi cannot be used as such�

Based on Theorem � it is straightforward to show that the following error bound

holds for the singular values of the upper Hessenberg matrix Hm�

Theorem ���� Suppose that m steps of the Arnoldi method have been taken� and

let �m� Ym� and Zm be de�ned as above� If

Ayi � �izi � ���
�����

AT zi � �iyi � ���
�����

Then

min
�i���A�

j�i � �j � �mp
�
jvmij� jj��jj i � �� � � � � n�

Proof� Consider the symmetric matrix B and vectors �i and � de	ned by�

B �

�
� AT

A �

�
� �i �

�p
�

�
yi

zi

�
� � �

�
��

��

�
�

Equations 
���������� can be written as

�
� AT

A �

� �
yi

zi

�
� �i

�
yi

zi

�
�

�
��

��

�
�

or more compactly

B�i � �i�i � ��
p
��

The result follows from a standard error bound for approximate eigenvalues and eigen�

vectors for symmetric matrices 
see for example ���
pp� ���� and the fact that the

eigenvalues of the matrix B are � the singular values of the matrix A�

Remark� As stated above
 the theorems hold for Hm when we would really like an

equivalent result for Hm since the GMRES method uses Hm to solve the least squares

problem 
����� We conjecture that the error bounds hold for Hm and the numerical

results certainly point in this direction
 but we have not been able to prove so�

One could also make this argument based on several properties relating the singular

values of the Hessenberg matrices generated at step m and step m� �� Let Hm� Hm��

��



be the upper Hessenberg matrices generated after m and m � � steps respectively of

the GMRES process� The matrices Hm� Hm�� are de	ned similarly� Then the following

properties hold�

�� The singular values of Hm�� interlace the singular values of Hm

�i
Hm��� � �i
Hm� � �i��
Hm���� i � �� � � �m�
�����

�� The singular values of Hm�� interlace the singular values of Hm
that is


�i
Hm��� � �i
Hm� � �i��
Hm���� i � �� � � �m�
�����

�� The singular values of Hm and Hm are related by

�i
Hm� � �i
Hm�� i � �� � � � � m
�����

Of these properties
 the 	rst one is the most relevant for our purposes� This property

tells us that the smallest singular value is a nonincreasing function of the step m�

Therefore if the smallest singular value of Hm is ever small then we know that the

matrix A must have at least one singular value that is at least as small as the one

computed from the singular value decomposition of Hm�

�� Numerical Results� This section presents several numerical experiments com�

paring the various methods described in Section ��

Recall that the linear system of interest is

Ax � b�

where x and b are n dimensional vectors and A is an n� n real matrix which is nearly

singular� The numerical experiments were run on an SGI �D���
 using double precision

arithmetic 
machine epsilon � ������� The method was said to converge whenever

krkk�kr�k � ��

where � � ����� We will denote the new modi	cation to the GMRES method by the

term GMSVD� For comparison purposes we also tested an algorithm based on computing

the solution to the linear system by the GMRES method and then computing the

��



de�ated solution by orthogonalizing against the null vector as computed from a singular

value decomposition of the matrix A� This method will be referred to as GMRESD�

To compare the two methods
 we computed both the de�ated error and the de�ated

residual� By the de�ated error and de�ated residual we mean the projection of the

error and residual into the subspace spanned by the singular vectors corresponding to

the large singular values� In our case this means the subspace spanned by all of the

singular vectors except for the one corresponding to the small singular value� An easy

way to compute these quantities is to de	ne the projection operators

Pv � I � vmv
T
m�
�����

Pu � I � umu
T
m�
�����

and the de�ated error and residual by the formulas

ed � Pve � Pv
x� �x��
�����

rd � Pur � Pu
b� A�x��
�����

where �x is the computed solution�

Test case �� The 	rst test case consists of taking a symmetric positive de	nite

matrix and perturbing it by adding a small nonsymmetric term� De	ne A
�� � D��E�

where the matrix D is de	ned by D � diag 
���J � �� �� � � � � n�� and J � �� �� � � � � ��� The

matrices
 E
 are computed by generating uniform random numbers between �����
 ����

�
 and normalizing so that kEk� � �� The amount of nonsymmetry can then be

adjusted by varying the noise level �� For this test problem
 we chose n � ��� and

m � ���

Table � contains the de�ated errors and de�ated residuals for test case �
 using

a noise level of ����� Similar results can be obtained for larger values of �� The

results clearly indicate the advantage of using the GMSVD method to compute both

the de�ated errors and residuals� Using the new method
 both the de�ated error and

the de�ated residual can be computed accurately irregardless of the condition number of

the matrix
 while the unmodi	ed GMRES solution deteriorates as the condition number

increases� In Table �
 we present the error in the computed singular values for test case

� for various values of the noise level�
��



Table �

De�ated errors and residuals for test case � �� � ��e����

De�ated errors De�ated residuals

J GMRESD GMSVD GMRESD GMSVD

� ������E��� ������E��� ������E��� ������E���

� ������E��� ������E��� ������E��� ������E���

� ������E��� ������E��� ������E��� ������E���

� ������E��� ������E��� ������E��� ������E���

� ������E��� ������E��� ������E��� ������E���

� ������E��� ������E��� ������E��� ������E���

� ������E��� ������E��� ������E��� ������E���

� ������E��� ������E��� ������E��� ������E���

� ������E��� ������E��� ������E��� ������E���

�� ������E��� ������E��� ������E��� ������E���

Test case �� The purpose of the second test problem is to simulate a typ�

ical linear system arising in a seismic inversion problem� These problems have one

or more small singular values and one or more large singular values with the rest of

the spectrum fairly well�conditioned� To simulate this problem
 we set the matrix

D � diag 
���J � �� � � � � �� ������ with the values of d� through dn�� varying uniformly

between � and �� We then generate two random orthogonal matrices
 Q� and Q�
 which

are used to compute the matrix A � Q�DQ�� This example generates a non�symmetric

matrix that is well�conditioned if the small and large eigenvalues are excluded
 which

is typical of some of the velocity inversion problems� In this problem
 we have chosen

n � ���� and m � ���

The results for the seismic prototype problem 
test case �� are given in Table ��

The errors in the computed singular values and the norm of the di�erence between the

right singular vector computed by GMSVD and the true right singular vector for the

matrix A are given in columns ��� of Table �� We note that after only �� iterations

both the smallest singular value and the corresponding right singular value of the large

matrix A are very well approximated�

�	



Table �

Error in singular values for test case � with various levels of noise� ��

J � � ����� � � ����	 � � �����

� ������E��� ������E��� ����E���

� ������E��� ������E��� ����E���

� ������E��� ������E��� ����E���

� ������E��� ������E��� ����E���

� ������E��� ������E��� ����E���

� ������E��� ������E��� ����E���

� ������E��� ������E��� ����E���

� ������E��� ������E��� ����E���

� ������E��� ������E��� ����E���

�� ������E��� ������E��� ����E���

Table �

Results for seismic prototype example� n 
 �����

J rd j�n � �mj jjy � vnjj�
� ����E��� ����E��� ����E���

� ����E��� ����E��� ����E���

� ����E��� ����E��� ����E���

� ����E��� ����E��� ����E���

� ����E��� ����E��� ����E���

� ����E��� ����E��� ����E���

� ����E��� ����E��� ����E���

� ����E��� ����E��� ����E���

� ����E��� ����E��� ����E���

�� ����E��� ����E��� ����E���

�� Conclusions� We have presented a modi	cation of the GMRES method that

can accurately compute the solution of a linear system in the presence of ill�conditioning�

We have shown that the de�ated residuals and errors can be computed accurately using

the new method
 irrespective of the condition number of the linear system� We have also

��



given error bounds for the approximate singular values and right singular vectors� Both

of these quantities can be computed cheaply as part of the process of solving the linear

system� We have also shown that the small singular values and the corresponding right

singular vectors can be approximated accurately using the modi	ed GMRES method�
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